In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain. In turn, the hypothalamus controls the glucose entry in tissues, and thus glycemia.
Nutraceuticals
Enteric neurons and glycemia control
In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain. In turn, the hypothalamus controls the glucose entry in tissues, and thus glycemia.
The enteric nervous system is our second brain
The enteric nervous system (ENS), referred to as the “second brain,” is an extensive network of different cell types located along the digestive tract.
Targeting our second brain using prebiotics
The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia remains a major target. For instance, we researched and demonstrated how the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes.
How does the gut microbiota interact with our second brain?
Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson’s, Alzheimer’s, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain disfunctions and associated pathologies.
Camu camu and its applications in nutraceutics
The Amazonian forests are home to a shrub, the camu-camu, whose fruit could be of great help in the fight against obesity and metabolic diseases. This is described in our latest study published with the A-Mansia R&D team in the journal Metabolites.
Targeting our second brain to fight diabetes
The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered a pioneering approach.
Research
Categorie
Archives
gut-health n°1
Have you ever wondered how your body turns the food you eat into the energy you need? The secret lies within the fascinating world of gut physiology. Your digestive tract is not just a simple tube for digestion—it’s a complex system designed to absorb essential...
Teambuilding Enterosys
Salon BioFIT 2023
Join us for Salon BioFIT2023 where we'll come together to foster a sens of community, collaboration and success. Let's meet !Booking plateform link Maybe you can also like : Foodtech innovative research boosted with gut and gut-brain axis
Enteric neurons for functional applications in health care
Pharmaceuticals Studying the role of the Enteric Nervous System (ENS) in the development of gut-brain pathologies (e.g., Alzheimer’s, Parkinson’s, diabetes, aging, stress, visceral pain) is an ever-expanding research topic. Researchers are starting to propose numerous...
Enteric neurons and glycemia control
The gut-brain axis:You have a message from your gut In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain....