Nutraceuticals

Enteric neurons for functional applications in health care

Enteric neurons for functional applications in health care

In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain. In turn, the hypothalamus controls the glucose entry in tissues, and thus glycemia.

Enteric neurons and glycemia control

Enteric neurons and glycemia control

In the intestine, gut distension and nutrients are detected by mechanoreceptors and chemoreceptors, respectively. The activation of these receptors sends an afferent nervous message to the hypothalamus in the brain. In turn, the hypothalamus controls the glucose entry in tissues, and thus glycemia.

12-HETE enterosyne: new insights into glucose metabolism

12-HETE enterosyne: new insights into glucose metabolism

The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia remains a major target. For instance, we researched and demonstrated how the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes.

How does the gut microbiota interact with our second brain?

How does the gut microbiota interact with our second brain?

Currently, the gut is considered a primary site for the development of pathologies that modify brain functions such as neurodegenerative (Parkinson’s, Alzheimer’s, etc.) and metabolic (type 2 diabetes, obesity, etc.) disorders. Deciphering the mode of interaction between microbiota and the brain is a real original option to prevent (and maybe treat in the future) the establishment of gut-brain disfunctions and associated pathologies.

Camu Camu extract: health benefits against metabolic disorders

Camu Camu extract: health benefits against metabolic disorders

The Amazonian forests are home to a shrub, the camu-camu, whose fruit could be of great help in the fight against obesity and metabolic diseases. This is described in our latest study published with the A-Mansia R&D team in the journal Metabolites.

Enteric nervous system : Galanin’s role in gut-brain axis

Enteric nervous system : Galanin’s role in gut-brain axis

The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered a pioneering approach.

Research

Categorie

Archives

Intestinal barrier : key to digestion and nutrient absorption 

Unlock the mystery of your digestive system!  In this edition, we explore the vital roles of digestion and nutrient absorption, essential for maintaining health. Digestion is the process by which foods are broken down into smaller molecules, or nutrients, making them...

gut-health : the key to general health

Have you ever wondered how your body turns the food you eat into the energy you need? The secret lies within the fascinating world of gut physiology. Your digestive tract is not just a simple tube for digestion—it’s a complex system designed to absorb essential...

Teambuilding Enterosys

On January 11th and 12th, 2024, the Enterosys team came together for a dynamic event designed to strengthen team cohesion, celebrate achievements, and set a vision for the future. This gathering was not only an opportunity to reflect on the...

Salon BioFIT 2023

Join us for Salon BioFIT2023 where we'll come together to foster a sens of community, collaboration and success. Let's meet !Booking plateform link Maybe you can also like : Foodtech innovative research boosted with gut and gut-brain axis

Enteric neurons for functional applications in health care

Gut-Brain Axis: A growing research focus The gut-brain axis is emerging as one of the most exciting and complex areas of medical research. This bidirectional communication network between the gastrointestinal tract and the brain plays a crucial role in both physical...